H=-16t^2+122t+5

Simple and best practice solution for H=-16t^2+122t+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+122t+5 equation:



=-16H^2+122H+5
We move all terms to the left:
-(-16H^2+122H+5)=0
We get rid of parentheses
16H^2-122H-5=0
a = 16; b = -122; c = -5;
Δ = b2-4ac
Δ = -1222-4·16·(-5)
Δ = 15204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15204}=\sqrt{4*3801}=\sqrt{4}*\sqrt{3801}=2\sqrt{3801}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-122)-2\sqrt{3801}}{2*16}=\frac{122-2\sqrt{3801}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-122)+2\sqrt{3801}}{2*16}=\frac{122+2\sqrt{3801}}{32} $

See similar equations:

| /7m-2-6/7m=-13 | | 5/7m-2-6/5m=-13 | | -55-6x=45-11x | | -9x-24=-12x+39 | | m/7=3/8 | | –19p+19+6p=–8p+4 | | x-37=98 | | 8x-81=144-x | | Z+4z=6 | | 2n+10=-2n+10 | | -167-4x=-11x+85 | | 2(n+5)=-2n+10 | | -144=8(v-10) | | 3x-164=136-12x | | 4n^2+8n+8=0 | | x=133.33 | | 30+3w=90 | | -71+x=-5x+61 | | F(-2)=8x+3 | | 30=3x+90 | | 10/5=n12 | | -52+x=48-3x | | 9x^2-27x=15 | | 4g+58.50=76.50 | | -137-x=-8x+38 | | -79-5x=-14x+65 | | -6x-88=-12x+68 | | (2x+4)+(5x-12)= | | 3(x+10)=20-7x | | 20x=176 | | 1/3-2/5x=-1/3x+4/5 | | 9-3x=6(x-3) |

Equations solver categories